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Received 5 July 1989, in final form 23 October 1989 

Abstract. We propose a new method for the simulation of spin dynamics based on the 
Langevin equations and apply it  to an anisotropic ferromagnet on the square lattice. Our 
method reproduces the temperature dependence of the magnetisation in the Monte Carlo 
method. The dynamical transverse susceptibility G(q, U )  is calculated and the dispersion 
relation is obtained from the peak position of Im G(q, w ) .  The dispersion relation at the 
lowest temperature follows the results in the linearisedspin-wave theory. We also investigate 
the temperature dependence of the dispersion relation. 

1. Introduction 

Recently, many investigations for spin systems with competing interactions have been 
performed, and work using the Monte Carlo (MC) simulation has played an important 
role in combining theoretical suggestions and experimental results. However, only a few 
studies on the basis of dynamic simulation for spin systems have been reported (Walker 
and Walstedt 1977, Fujimoto et a1 1987) and almost all of these are restricted to inves- 
tigations at very low temperatures. 

Here we devise a dynamic simulation for spin systems at a finite temperature using 
Langevin equations. In section 2, we present a method for numerical integrations of the 
Langevin equations. In section 3, we apply it to an anisotropic ferromagnet on the square 
lattice. We firstly show that the method reproduces well known results by other methods 
and then demonstrate that it is applicable to spin dynamics at finite temperatures. Section 
4 is devoted to conclusions. 

2. Method 

We consider a classical Heisenberg model with anisotropic interactions: 

H =  - x[Jbo,,o,, + JI: (orx~,x  + olyoIy)1 - U, * h,  (1) 
(Y) I 

where I U, I = 1 and h is an external magnetic field which will vary in time and space. Now 
we start with the following Langevin equations: 

dol,(t)/dt = {Herf, o,[I - TO 6Heff/Soli + Cli(t> (2) 
where 
with the following mean and variance: 

is the Ith component of a classical spin at site i and c,, is a Gaussian white noise 
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where t = kBT ( T  and kB are the absolute temperature and the Boltzmann constant, 
which is chosen as kB = 1 hereafter, respectively) and random noise averages are 
expressed by { a ) * .  The { .  , e }  means the Poisson bracket and {a,,, ajy} = y0,,6~, 
{a,,, ai,} = yalxb, and {a,,, ajx} = yaiybil, where y is the magnetomechanical ratio. 

We can readily show (Ma 1976) that (2 )  with the noise of ( 3 )  leads to the Boltzmann 
distribution of P ( { a i } )  0~ exp(-Heff/t) in the stationary limit, where P ( { a i } ;  t)  is the 
probability of finding a spin configuration of {a,} at time t and 

P ( { a , } )  = lim P ( { a i } ;  t) .  
1-m 

However, (2 )  does not assure the constraint I a,(t) 1 = 1 for all i and t. Here, instead of 
the correct constraint, we impose a rather weak constraint: 

( lai l>=l for all i (4) 

where ( e )  means a long-time average. To ensure the constraint, a weight function W 
is added to the original Hamiltonian. Now the Hamiltonian used in our simulation is 
expressed as 

Heff = H + W 

W =  Z(+rIai1* + Q U ( ~ ~ ( ~ ) .  

with 

i 

Therefore in this model there are fluctuations of the magnitudes of individual spins. We 
choose U as a positive constant. The larger U is chosen to be, the smaller the fluctuations 
which result. It is seen, however, that there is an upper limit of U determined from the 
magnitude of the discreteness of time for numerical integrations, as mentioned later. 
We consider r as a chemical potential for 2,l ail and determine it so as to satisfy the 
condition 

(Fl-itI>=.* (7) 

Since we do not know a priori the value of r ,  we simultaneously determine it while 
numerical integrations of ( 2 )  are performed. To do this, we change r according to the 
following equation: 

1 d r  1 
r , d t  N 
--=-xluiy- 1. 

Next we proceed to the details of numerical integrations. Using equations (1) and 
( 6 ) ,  each term in ( 2 )  is expressed as follows: 

{Heff, ai/} = y [ a i  X hieffll (9) 

I1 I1 wherehieff = ( 2 , J k a .  I 11 IX + hi,,2jJ$ajy .t hiy ,2 jJuajz  + hi,),J$ = J $  = J $ , J p  =Ji jand  
{W, ai} = 0 for exterior products between parallel vectors. 
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First we perform numerical integrations using the Euler difference equations. 
Replacing dair/dt by [air( t  + At)  - o i r ( t ) ] /A t ,  (2) and (3) are rewritten as follows: 

a,l(t + At)  = oi/(t) + A t [ ( ~ / r o > ( a i  x h,eff)l - SHefi/Sai/ + Ei/(t>I (11) 

From (1 1)-( 13), we can perform numerical integrations using Gaussian random numbers 
with variance 2z/(T0 At) for Eil(t)-values with given values To At,  y /To  and U .  We 
see from experience that there exists an upper limit of U for a given r o A t ;  unless 
U 5 J / (2r0  At) ,  numerical integrations become divergent where J = max{Jij}. In this 
paper, we mainly chose the following values for the parameters: 

To At = 1/100 y / ro  = i o  U = 40 J .  

To see the validity of the method, we firstly calculate the magnetisation (versus T )  of an 
anisotropic ferromagnet on the square lattice and compare it with that in the MC method. 
(We performed a MC simulation following Binder and Landau (1976).) The results are 
very different from the MC result. It is to be noted, however, that, if we drop the {Heff, air} 
terms in (2), good agreement is obtained. Therefore a higher-order approximation is 
required in order to treat the precession terms {Heif, air} precisely. Instead of the Euler 
difference, we use the simple Runge-Kutta method. Replacing uil(t + At) in (11) by 
bj/(t  + At) ,  qr(t  + At)  in the simple Runge-Kutta method is obtained from 

ail(t + At)  = ail(t) + (A t /2 ) [ (da i /  /d t ) io ( r ) }  + (dail/dt)~b(r+*t)}I* (14) 
The result in this method is in good agreement with the MC result (figure l ( a )  later). 
Therefore we use (14) instead of (11). We see by experience that the condition for 
convergence U S  J / ( 2 r 0  At)  in the Euler method is relaxed as U 5 J/(ro At) in the simple 
Runge-Kutta method. 

3. Application to an anisotropic ferromagnet 
II We apply the method to a ferromagnet with anisotropic interactions ( J Y  = J ,  

J i  = 0.6J,J > 0, for nearest-neighbour pairs) on the square lattice with periodic bound- 
ary conditions. Hereafter r/J and u/J are simply described as r and U ,  respectively. 

To examine the reliability of the method, we firstly calculate the magnetisations, the 
fluctuations of the magnitude of spins and the average value of r :  

f =  ( r )  
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for a lattice with N = 20 x 20 and show these plotted against T in  figure 1. The initial 
state is chosen to be U ,  = (1, 1, l ) / d 3  (for all i )  and the temperature is gradually 
decreased from 1.2J. At each temperature, after n, steps per spin are discarded, data 
for nf - n, steps per spin are used to average the physical quantities. We choose n, = 
1500 and nf = 3000 for U = 40, and n, = 3000 and nf = 4000 for U = 80. Comparing the 

results with those for a smaller lattice, we find no remarkable size dependence at low 
temperatures, except for TSF. It seems that TSF is inversely proportional to N .  The results 
for the two cases U = 40 and U = 80 are compared in figure 1 when the other parameters 
are fixed such as To At = 1/100 and y/Ta = 10. As expected, the LSF becomes smaller 
when U becomes larger. Irrespective of the value of U ,  the LSF and TSF become smaller 
as the temperature is decreased. This is because the fluctuation becomes smaller as the 
temperature is reduced. 

Now we investigate the spin-wave excitations at finite temperatures on the lattice 
with N = 20 x 20. Here we use the parameters To At = 1/100, y/To = 10 and U = 40. 
We tried two methods to extract the spin excitations, i.e. the dynamical transverse 
susceptibility G(q, w ) :  one is to calculate the space-time Fourier transforms of spin- 
spin correlation functions obtained by the simulation; the other is to measure the 
response of a system against an external field. It turned out that, within the same 
computational time, scatterings of the results are smaller in the latter method than in 
the former method. Therefore we use the latter method and explain it in the following. 

An external field which depends on space and time and is given by 

hix(t) = 6h  COS(^ * r;  - u t )  

hiy( t )  = 6h sin(k ri - ut) sgn(M,) 
for all i 

is applied, where ri is the position vector at site i. The spin components induced by this 
field may be written as 
aix(t) = 6ai,(k, w )  cos(k - ri - ut) - 6 a s ( k ,  w )  sin(k ri  - wt) + . . .. (16) 
The response functions are given by 

The inverse participation rate (IPR) (Walker and Walstedt 1977), which is a measure of 
the extended or localised nature of the excitation, is defined by 

2 
IPR = E (ba,,(k, U ) ) ~ / ( E  I (dais(k9 U ) )  I ) . 

i i 

Values of IPR are O(1) and O(N-')  for localised and extended modes, respectively 

Figure 1 (opposite). (a)  The uniform magnetisation M,,  ( b )  LSF, (c) TSF and (d )  P (versus T )  in the two- 
dimensional anisotropic ferromagnet (J! ,  = J ,  J i  = 0.6J for the nearest-neighbour pairs). The results with 
U = 40 (0) and U = 80 (0)  are shown with other parameters fixed as N = 20 x 20, To Ar = 1/100 and y / T o  = 
10. In (a ) ,  the MC results ( N  = 20 x 20) ( 0 )  in the classical Heisenberg model are also shown. 
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The calculation has been performed as follows: after the temperature has been 
decreased to the measured temperature, the field (15) is applied (6h was chosen to be 
0.031 after several trials). The angular frequency of the field is chosen to be w = 2n/ 
(Afncycl), where ncycl is a positive integer. At each angular frequency, after Zlncycl steps 
per spin are discarded to obtain a stationary state, data for (1, - Z,)ncyc, steps per spin 
are kept for Fourier analysis of (16). 

The plots of Im G, Re G and IPR against u/y for several k-values at T = 0.051 
and 0.651 are shown in figures 2 and 3. Even at the lowest temperature, Im G has 
a peak with a larger half-width for a larger lkl, but this is understood by noting that 
6Heff/6a_, = (c1 + c,lk12)a, + a . . ,  c1, c2 > 0, for lkl e 1. The resonance frequencies 
u c / y  are determined from the peak points of the values of Im G, or from the zero points 
of the values of Re  G. At  T = 0.051, IPRS for all k-values become 1/N (=0.0025) at w = 
U,. At higher temperatures, the decrease in IPR at w = U, becomes smaller for larger 
1 kl . In figure 4, the values of wck( T)/wCk(O) for several k-values are shown against Twith 
the magnetisation curve, where wck(0) is the resonance frequency of the linearised spin- 
wave theory, i.e. wck(0)/y  = 4J[1 - qP(k)], P(k) = [cos(k,a) + cos(kya)]/2, where a is a 
lattice constant. At the lowest temperature, our results are in good agreement with those 
of the spin-wave theory. As seen in figure 4, the temperature dependence of wCk( T ) /  
wck(0) fork = ((2/5a)n, 0) is in agreement with that of the magnetisation for T 5 0.81. 
(We could not obtain clear results for T 5 0.951 within the same computational time as 
for T G  0.801.) The values of wCk(T)/wck(O) fork  = (0.0) and ((4/5a)n, 0) are smaller 
and larger than that for k = ((2/5a)n, 0), respectively. 

Theoretically, the RPA Green function method (Tyablikov 1959) predicted the disper- 
sion relation w C k ( T ) / y  = 4JM,[1 - qP(k)]  at finite temperatures, but this result cannot 
explain our results of the k-dependence of wck(T)/mCk(O). Lines (1971) insisted that the 
M ,  in the above equation should be replaced by &T)  = ((al,al+Rz))1’2i IRl = 2n/ /k l .  
This qualitatively explains the k-dependence of wck( T)/wCk(O), because &,( T )  increases 
as I kl increases. However, the Lines assumption does not agree with our results, because 
& T )  + M ,  for lkl+ 0 in the Lines assumption, while wck=~(T) /mck=o(0)  in our simu- 
lations is obviously smaller than M,. 

4. Conclusions 

We have proposed a new method of analysing the spin dynamics of the classical Hei- 
senberg model. Our method is based on a Langevin equation of motion which contains 
both a dissipative term and a noise term representing thermal disturbances of spins. 
Thus the method is applicable to the system at finite temperatures. We have shown that 
the method reproduces the static magnetisation curve of the MC method fairly well. 

Our method has been applied to the dynamics of an anisotropic ferromagnet on the 
square lattice. At  a very low temperature, our results are in good agreement with those 
of the spin-wave theory. As the temperature is increased, the resonance frequency 
wCk( T )  for every wavevector k decreases monotonically. This is consistent with a well 
known result of the RPA theory in which uck( T)/wck(0)  = Mz(  T ) ,  where M,( T )  is the 
magnetisation per lattice site. Our results predicted a k-dependence of cock( T)/wCk(O) 
which is qualitatively in agreement with the Lines’ suggestions in which M,( T )  should 
be replaced by the square root of the two-spin correlation function ( ( c ~ ~ p ~ + ~ , ) ) ~ ’ ~ ,  IR 1 = 
2n/(  kl . Our results also predict a problem that cock( T)/wCk(O) for I kl = 0 is smaller than 
M,(T)  at finite temperatures. 
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Figure 4. The temperature dependence of the resonance frequencies which are determined 
from zero points of the values of Re G, normalised by the zero-temperature values w,,(T)/ 
w,,(O) fork  = (0,O) (o), ( ( 2 / 5 a ) n ,  0) (0) and ( (4/5a)x,  0) (U), together with the mag- 
netisations M, (0). 

We have used an effective Hamiltonian which contains additional parameters U and 
r. So far as we can see, the dependence of the results on U is not large, if U is large enough. 
We have shown that our method can reproduce the well established results of the 
magnetisation curve and the spin-wave resonance at T = 0. We have also shown that the 
method can be successfully applied to the spin dynamics at finite temperatures. There 
are many applications of the method for the dynamics of more interesting and non-trivial 
models (e.g. a two-dimensional ferromagnet with an easy-plane anisotropy, random 
magnets). These will be reported in the near future. 
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